Inhibitory autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase analyzed by site-directed mutagenesis.
نویسندگان
چکیده
Initial autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) occurs at Thr286 (the "autonomy" site) and converts the kinase from a Ca(2+)-dependent to a partially Ca(2+)-independent or autonomous enzyme. After removal of Ca2+/calmodulin, the autonomous kinase undergoes a "burst" of inhibitory autophosphorylation at sites distinct from the autonomy site which may be masked in the presence of bound calmodulin. This burst of Ca(2+)-independent autophosphorylation blocks the ability of calmodulin to activate the kinase. We have used site-directed mutagenesis to replace putative inhibitory autophosphorylation sites within the calmodulin binding domain of recombinant alpha-CaM kinase with nonphosphorylatable alanines and examined the effects on autophosphorylation, kinase activity, and calmodulin binding. Although prominent Ca(2+)-independent autophosphorylation occurs within the calmodulin binding domain at Thr305, Thr306, and Ser314 in wild-type alpha-CaM kinase, the inhibitory effect on kinase activity and calmodulin binding is retained in mutants lacking any one of these three sites. However, when both Thr305 and Thr306 are converted to alanines the kinase does not display inhibition of either activity or calmodulin binding. Autophosphorylation at either Thr305 or Thr306 is therefore sufficient to block both binding and activation of the kinase by Ca2+/calmodulin. Thr306 is also slowly autophosphorylated in a basal reaction in the continuous absence of Ca2+/calmodulin. Autophosphorylation of Thr306 by the kinase in either its basal or autonomous state suggests that in the absence of bound calmodulin, the region of the autoregulatory domain surrounding Thr306, rather than the region near the autonomy site, lies nearest the peptide substrate binding site of the kinase.
منابع مشابه
Distinct autophosphorylation sites sequentially produce autonomy and inhibition of the multifunctional Ca2+/calmodulin-dependent protein kinase.
The multifunctional Ca2+/calmodulin-dependent protein kinase (multifunctional CaM kinase) may be an important mediator for neurotransmitters and hormones that utilize Ca2+ as a "second messenger." We examined the ability of autophosphorylation to convert the multifunctional CaM kinase to a Ca2+/calmodulin-independent (autonomous) form to determine whether autophosphorylation is a mechanism for ...
متن کاملMutagenesis of Thr-286 in monomeric Ca2+/calmodulin-dependent protein kinase II eliminates Ca2+/calmodulin-independent activity.
We have examined the role of Thr-286 autophosphorylation in the autoregulation of Ca2+/calmodulin-dependent protein kinase II. Using site-directed mutagenesis, we have substituted alanine or serine for Thr-286, or isoleucine for Arg-283, in the 50-kDa subunit of the kinase and expressed each protein in bacteria. Activation and autophosphorylation of all four enzymes were stringently dependent o...
متن کاملDual regulation of a chimeric plant serine/threonine kinase by calcium and calcium/calmodulin.
A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) gene characterized by a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca2+-binding domain was recently cloned from plants (Patil, S., Takezawa, D., and Poovaiah, B. W. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 4797-4801). The Escherichia coli-expressed CCaMK phosphorylates various protein and peptide substra...
متن کاملActive site-directed inhibition of Ca2+/calmodulin-dependent protein kinase type II by a bifunctional calmodulin-binding peptide.
The activation of Ca2+/calmodulin (CaM)-dependent protein kinase II (CaM-KII) by Ca2+/CaM results in autophosphorylation and the generation of Ca2+/CaM-independent enzyme activity. We postulated that CaM binding and subsequent autophosphorylation alters the conformation of CaM-KII and exposes its substrate-binding and catalytic site(s). Previous peptide mapping studies on CaM-KII demonstrated t...
متن کاملCalcium-stimulated autophosphorylation site of plant chimeric calcium/calmodulin-dependent protein kinase.
The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 267 24 شماره
صفحات -
تاریخ انتشار 1992